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ABSTRACT

This is the third paper in which we study iterations using linear

information for the solution of nonlinear equations. fn Wa. le 3h 7 {84

and-1-7 ve have considered the existence of globally convergent iterations

for the class of analytic functions. Here we study the complexity of such

iterations. We prove that even for the class of scalar complex polynomials

with simple zeros, any iteration using arbitrary linear information has

infinite complexity. More precisely, we show that for any iteration rand

any integer k, there exists a complex polynomial f with all simple zeros such

that the first k approximations produced by tAdo not approximate any solution

of f - 0 better than a starting approximation j.xE This holds even if the

distance between x and the nearest solution of f - 0 is arbitrarily small.
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1. INTRODUCTION

In this paper we continue the study of iterations using linear informa-

tion for the solution of nonlinear equations f - 0. In Wasilkowski [78] we

have proven that no stationary iteration using linear information can be

globally convergent for the class of scalar analytic functions with simple

zeros. In Wasilkowski (79] we have exhibited nonstationary iterations which

are globally convergent for the class of analytic functions with simple zeros

even for the abstract case.

In this paper we deal with the complexity of iterations using linear

information. We prove the surprising result that any such iteration has

infinite complexity even for the class 3 of scalar complex polynomials with

simple zeros. To make this negative result as strong as possible we have

chosen a relatively simple class .. Furthermore we deal with a very general

definition of information and iteration. Namely, any sequence of linear finite

dimensional operators is considered as possible information, and any sequence

of functionals as an iteration. We also do not specify which 4ero of f is

approximated, and the assumptions cconcerning the starting points are very weak.

Under these assumptions we prove that for any positive L, any integer k, and

any iteration p using linear information, there exists a complex polynomial f

having only simple zeros such that the distance between a starting approxima-

tion X0 and a. nearest zero a of f is no larger than L and the first k approxi-

mation produced by c do not approximate any zero of f better than x0 Note

that L can be arbitrarily small which means that x0 can be arbitrarily close

to a.
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Let S(f) denote the set of all zeros of f. By the complexity of an

iteration we mean the total cost of producing an approximation xN where N

is the minimal index such that dist(N,S(f)) ! C dist(x 0 ,S(f)) for a given

number e, e < i. We do not specify exactly what we mean by the "cost".

We merely assume that the cost of the assignment operation is not zero.

Thus, the complexity of an iteration is at least proportional to N. Since we

shall show that N can be arbitrarily large for some polynomials, this proves

that for every e the complexity is infinite in the class 1. This is a very

strong result since even assuming (theoretically) that all operations except

assignment are free, the complexity is still infinite.

This paper also illustrates the important difference between the concepts

of global convergence and complexity. The class of all linear information

supplies enough knowledge about f to guarantee the existence of globally con-

vergent iterations but the complexity of any such iteration is infinite.

We summarize the contents of the paper. For the reader's convenience,

in Sections 2 through 5 we deal only with iterations without memory. In

Sections 2 and 3 we define information, iteration without memory, globally

convergent iteration, and complexity of an iteration. In Section 4 we prove

two theorems which play an essential role in the proof of the main result

which is established in Section 5. In Section 6 we extend all results to

iterations with memory. In Section 7 we pose some open problems.



2.1

2. INFORMATION AND ITERATIONS WITHOUT MEMORY

For the reader's convenience we repeat the very general definition of

information and iteration without memory introduced in Wasilkowski [79].

For simplicity, in Sections 2 through 5 we deal only with iterations without

memory. The extension to the general case is given in Section 6.

Let H be the class of all complex polynomials and 3 be the subset of H

which consists of all polynomials having only simple zeros. Let S(f) denote

the set of all zeros of f, f E H. Consider the solution of a nonlinear

equation

(2.1) f(x) - 0, f eE.

To solve (2.1) iteratively we must know something about f. Let

L H x T be a functional which is linear with respect to the first

argument, i.e., Li(cIf1 + c2 f 2 ,x) - clLi(fl,x) + c2 Li(f 2 ,x), i 1,2,...a.

Then the linear information operator 2, 2 - [L 1 ,L 2 ,... , Ln] :H X -. (n is

defined as

(2.2) 2(f,x) - (L,(f,zl),L2(f,z2),...,Ln(f,zn)], Vf E H, Vx E C

where z 1 M x and

zj M g1(z ; Ll(f,z,),L 2(f'z2)...,Ljl(fzj 1l))

for some functions Cj, J - 2,3,...,n. Thus any z depends on the previously

computed information. For brevity we shall sometimes write zj = zj(f). Let

*n be the class of all such information operators.
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Consider a sequence of linear information operators 75 = i, "l. E n

Let x0 be an approximation of a solution of (2.1). Suppose we construct a

sequence of approximations (xi by the formula

(2.3) x, = Ti (x 0 ; .ti(f,x 0 ))

l+n.
where cp. :D C K 2 -* C are functionals, co' E (-Ii. Then the sequence

" = i is called an iteration without memory using , p E()



3.1

3. COMPLEXITY O ITERATIONS

In this section we define the complexity of an iteration. Let

dist(x,S(f)) - inf ix-al
S (f)

denote the distance between the point x and the set S(f). Let L be a positive

number and let w be an iteration without memory. For any f E 3 and x0 such

that

(3.1) dist(x0 S(f)) < L,

consider the sequence (i ) generated by tp. For any a, e < I, define

N - N(P,e,x0 f) as the minimal integer, if it exists, such that

(3.2) dist(xN,S(f)) ! c dist(x 0 ,5(f)),

and N - + - otherwise. The number N is determined by how many iterative

steps are necessary to reduce the starting error by e.

Let compCCP,xo,f) be the total cost of computing xN satisfying (3.2).

We do not specify exactly what we mean by the "cost". We merely assume

that the cost of the assignment operation is not zero. Since any iterative

step performs at least one assignment operation, there exists a positive

number c such that

(3.3) compC9969x 02f) 2:cN(;-CX 0 f)# WV9p$X 0 ,f.

In Wasilkowski [79] we showed there exist globally convergent iterations,

Le., iterations which for any x0 and f satisfying (3.1) construct a sequence

(xi) such t;,at
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(3.4) 1ra x. E s(f).

(This also holds for L + .) Note that for any globally convergent iteration

cp, the number N(p,s,x0,f) is finite for any positive e, any x0, and any fixed

f from .

We shall show that N(r,e,x0 ,f) is unbounded for a subset of . Let

(3.5) 3(x 0) ff E 3 : dist(x0 ,S(f)) < L).

Thus, 3(x0 ) is the set of all polynomials f from 3 for which the distance

between the initial approximation x0 and the nearest zero of f is less than L.

Let

(3.6) N(Ce,x 0) sup N(cpe,x 0 ,f)
f E3(x 0 )

be the minimal number of iterative steps which are necessary to reduce the

starting error by e for all f from 3(x0). Similarly, let

(3.7) omp ('P,¢,x 0 )  sup comp(TpC,x 0 ,f).
( c c ) f Q(x 0 )

Due to (3.3),

(3.8) comp(Y,C,x 0) k cN(T,C,x 0), 'wC,x 0 .

It is intuitively obvious that for e 0, N(m,0,x 0) + . In Section 5

we prove thac for any L E (0,+ -], any iteration rp using linear information

and any x E C,

N(YC,x 0 ) = +, 'we E [0,1)

which, due to (3.8), implies that

_____________________ i
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CCUOP(, ,x 0 + -, we IE [0,1) .

This means that the cost of reducing the starting error may be arbitrarily

large for som polynomials from ~3even if xis very close to a solution.



4.1

4. TWO THEOREMS

In this section we prove two theorems which play an essential role in the

proof of the main result. Although Theorem 4.1 is intuitively obvious its

proof is long and difficult. Since this theorem is basic, it would be inter-

esting to find a simpler proof.

We first define a linear operator used below. For any linear information

operator L = rL1 ,L2 ... L n ], . rZ n' and any x0 we define a linear operator

f E H,

(4.1) L f(g) [l(g,zl),L2 (g,z2 ),...,L n(g,z n )1, ig E H,

where zI  x0 and

(4.2) z z(f) =.(Zl; LI(f,z),L(f,z 2 ) ... L l(f,z.l))

are defined by the information operator T for the polynomial f. By ker 'f

we denote the kernel of 2f. We first establish

Theorem 4.1

For any integer n, any linear information operator n, n E n, any

integer k, any functionals m 1"2 .... 'ck E ( and any starting point

x 0 E 1, there exists a polynomial f E 3(x 0 ) such that

(4.3) XO'xl""k ,'4 S(f)

where x, = i(x 0 ; .Z(f,x 0 )), i - 1,2,...,k. U

Proof (induction with respect to n)

We first prove (4.3) for n i. Since . E * I' there exists a nonzero

polynomial h, h E H, satisfying
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(4.4) 2(h,x0) - 0.

Then there exists , E (0,-b, such that h(x0+ ) 0. For positive a, define

f (x) = x-x0-t3-h(x).

Let y1 (a),y 2 (a),...,yr (a) be the zeros of f where r is the degree of h. From

the theory of algebraic functions (see e.g., Wilkinson £63]) we know that

yl(a) x0d+ and yl(a) - x0+ as a tends to zero. It is possible to show that

the yi(a) are simple zeros and Iyi(a) I - + - as a goes to zero, i 2. Thus,

for sufficiently small a, fa E 3(x0) and f (x0) 0. Due to (4.4),

a ' 0  M(x-x0-0,x0) which means that

x, = i (x0,%q (fa9,0) ) - (Pi (x0,(x-x0-8,x 0))

does not depend on a, i - 1,2,...,k. Note that there exists a small a1 such

that

(4.5) [xoxl,...,xk] n [yl(1a),y2 (a1),...,yr(al)] -1

Indeed, for small a we have [y (a)j> max lxii for J - 2,3,...,r. Since

yl(a) takes infinitely many values as a tends to zero, there exists a1 such

that yl(a1) xi, i = 1,2,...,k, which proves (4.5). Taking now f -f ,, we

get f E J(x0) and xoxl,...,xk 0 S(f). This completes the proof of (4.3) for

nh-.

Suppose now by induction, that (4.3) holds for n Z no . We want to show

that (4.3) also holds for n - nol. On the contrary assume that there exist

n E*n

n n2 *n *L *2'" *]

• : , :.. . . ... .. .. . .. . . . .... . .. .. . ... ... ..... .. .. .. .. .. ... ..... ..2 n , J ll i "" . ..
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k, (M,( ) and x E S such that for any polynomial f E 3(x

(4.6) '-_i E 70,k] :xi(f) = CPi (x0; " (f,x0)) E S(f) .

Define the information operator

.1 (f, [L (f, ),L2(f~z) . .L (~
n-i x0) 1~ 1 2 ) 2 ' n-If'n-l)

where z. are given by n . We shall construct functionals 1i,,2 P'.'. -( n-1. n
* * Xk, * * * *

such that the set (x0 ,xx 2,..... xi = xif) Di(x0 ; _l(f,x 0)), contains a

zero of f for any polynomial f from 3(x0). Since M-i =  
, this will be a

0 n no
contradiction.

Let
A, = £f E 3(x0) f(x0) = 03

and let A2 be the set of all f E 3(x0) for which the functional L n(.,zn (f)) is

linearly dependent on the functionals Ll(-,zl(f)), L2 (.,z2 (f)), ... , n-l( .,Zn 1 l(f)),

i.e., f E A2 iff there exist constants cl,c 2 ,...,c nI such that

n-i
*7

(4.7) Lnn(-,zn (f)) L cjL,(',zj(f)).
j=l

Note that c. depends on the values z1(f),z 2 (f),...,zn(f) and the functionals

LL2,...,Ln. Observe also that for f E A2 we do not have to compute L n(f,z n(f))

sinc e,

n-I

Ln(f,z n(f)) = L (f,zM(f))

j-l

is expressed by the previously computed values.

Let

(4.8) A3  ,(x0),(A

3 1"A2)
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Then for any f E A3 , f(x 0) 0 0 and

(.) L (f) * *i(*(;lf)L ( )

For an information operator 21 and f E 3, let

B f) (at E (C : Vh E ker 'If h(a) - 0)

where f is a linear operator defined by (4.1). We need the following lemnas.
f

Lemma 4.1

If A3  6 then for any f E A3s

s(f) nl B(2.1,f) A.

Proof

From (4.9) there exists a polynomial C, m (f) E H, such that

Ln(Czn(f)) - 1 and C E ker nl Define

ga(x) - f(x)+aC(x)

for a > 0. Since f has only simple zeros, then as In the proof for n - 1, we

can conclude that g has only simple zeros whicb tend to the zeros of f and

to infinity (if the degree of f is less than the degree of C) as a goes to

zero. Thus, g5 E (xO) for sufficiently small a. Note that

L (Szj (f)) a L (f.z (f)) for j - 1,2,...,n-l which means z (f) - zj(g for

j M 1,2,...,n. Thus gC %A2. Since x0  S(f), then x0 also does not belong

to S(g.) for sufficiently small a, say a E (0,ao0). Thus g a E A3

1 0 - io(o) C (l,k] :xi o(5 ) - (Pi0 (xO; M(syXO)) S S( ), a (0, 0).

0 ~~(~~x0 ) ~ win")
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Let h be an arbitrary polynomial, h E ker ',f. Consider

where , is a sufficiently small number. Then g,' E A3 and

'q(grxo) = I(g ,,x O) which means that x i(ga, ) xi(g C ) does not depend on

3, i = 1,2,...,k, and therefore

h(xi (g.)) = 0, ,'o E (0,a 0 ).

Since h is arbitrary, this yields that S(g+o) r B(%,f) is nonempty.

Let h E ker "I be a nonzero polynomial. Then there exists i0 
= io(a) E [l,k]

such that x. is a zero of g + aC and h, a E (O,o0). Since a takes infinitely

many values, there exist distinct a1 and a 2, both from (Oo), such that

i 0  )(a) i0 (a2). Let i i0 (al) = i0 (a 2 ) and xi = xi(gl) = xi(g (). Then
12

0 = g l(xi) - f(xi) + a I (xi)

Sg (xi) =f(x) + a2!(x

This means f(xi) = (xi) 0 and since h is arbitrary, we get

xi~~ ~~ ~) s , ,f)

Since ker lf linite e ker If, see (4.9) and the definition of C, we
n-l,f nf

get x. E S(f) r' B( f ). Thus S(f) I' B( ) is nonempty which completes
. -n-1, f n-l,f

the proof of Lemma 4.1. K

For any f, f E 3(x0), let r I r(f), j - J(f), (j - 1,2,...r) be indices

such that (Ll (-,Zj (f)), L2 ('zJ (f)),...,Lr (',z J(f))) is a basis of the
1 J 1 * J2 J2 * r ir

space lin(l4(.,zl(f)),L 2 (.,z2(f))..., Lnl(f))3. Let CI,2,...,Cr, Ci(f) E H,

be polynomials satisfying
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1 if i,

L is(Ci z isf)

0 ifi 1

We define r

wf L L(fz

and S-1

A4 " Ef E (xo)  S (wf n B(lt. l f )  .

Lemma 4.2

(i) A3 C A4 ,

(ii) if A4 € , then for any f E A4'

S(wf) n B(!.lf) C S(f).

Proof

Without loss of generality we can assume that A3 is nonempty. Let f E A3

be arbitrary. Then hf d f-wf E ker 9n-l2 f and from Lemma 4.1, there exists

o E S(f) n B(n-lf). Thus, wf(C) - f(@)-hf(d) - 0 which means that

S(wf) f B("n lf) is nonempty. Thus, f E A4 which proves that A3 C A4 .

To prove (ii), let f be an arbitrary polynomial from A4. There exists

of E S(wf) n B(2 f). Since hf E ker fn-l f'(el) " wf( )+hf(,) - 0
1n-1, f) - f(+f1, 1)f-

which means that orE S(f). Thus, Lemma 4.2 is proven. U

Note that knowing %n 1 (f,xo) we can verify whether f belongs to Ai,

i - 2,4. Furthermore for any f E 3(x0) with * " 2 (f, ) E A0 U-1 0 n-i1

iff f E Au i - 2,4. For i = 1,2,..,k, define



4.7

ce E S(wf) f B(n.l 1 f) if f E A4 ,

n-I

(x ; 17t-l(f'x0 =(x ; ['I-(f'x0 c.L.(f,z.(f))1) if f E A\A4

j-l

0 otherwise,

where f E 3(x ) and 2 * *,

n - 0 1 0 n-l(f,x0 ). Thus, the functionals Ti are well-
* *

defined and ci E ("l). Furthermore
n-I

(4.10) Vf E 3(x 0 ), 3i0 E [0,k] x0 E S(f).
0

Indeed, if f E A then, due to Lemma 4.2(ii), m (x 0 ,Onl (f,x0)) = a E S(f) for

any i = 1,2,. ..,k. If f E 3(x0)\A4 , then due to Lemma 4.2(i), f E A 1  A 2 which

means that either x E S(f) or w (x0; - 1 (f,x0)) T m.0(x0 ; (f,x )) E S(f)
0n 0

for some i0 E [l,k]. Since rD E ( and 1 t , (4.10) contradicts the

inductive assumption. Thus, the proof of Theorem 4.1 is completed. M

Theorem 4.1 says that for any linear information operator M and any finite

number of functionals T1,'2,...k E (2), there exists a polynomial f 9, 3(x 0)

such that no point x. = Pi(x0; W(f,x0)) is a zero a of f. Now we show that x

cannot approximate a better than x0.

Theorem 4.2

For any integer n, any linear information operator M, 2 - [LI,L 2 ,...,L I E n

any integer k, any functionals m1 , 2 , .... k E -('-) and any starting p~int x0 0 C,

there exists a polynomial f E 3(x O) such that

min dist(xi,S(f)) - dist(x 0 ,S(f)) 0
i-0, 1 .... ,k

where xi a x i(f) - Ti(xO; .7(f,xo)).
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Proof

From Theorem 4.1, there exists a polynomial g, g E I(x 0 ), such that

X, "xl(g),...,xuxk(g) S(g). Let I - (i E [1,k] :x (g) X x 0 ]. If I =

then for f - g we have

0 dist(xoS(f)) - dist(xi(f),S(f)), vi - 1,2,...,k,

which completes the proof.

Suppose therefore that I 6. Consider a polynomial w of the form

n

(4.11) w(x) - F(x-xi)m(x-xO) Z a xi,  m - max3n,deg g),
iTi

satisfying

(4.12) 2l (w) - 0.

Note that (4.12) is equivalent to the following system of n homogeneous linear

equations

n

(4.13) a i Ls( (x-xi)M(x-x 0)xj,zs(g)) -0 for 1,2,...,n.

ino

Since (4.13) has more unknowns than equations, there exists a non-zero polynomial

satisfying (4.11) and (4.12). Cousider the factorization of v,

w(x) a (x-x O) [(x- xi ) p i (xll -y
LEI I

for some r, r < n, s1982#...,Or and po, pi for i E I where y x, for any i and J.

Due to (4.11),

(4.14) p0 :n+l and pi a 3n for i E I.
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For a > 0 define

f (x) g(x) + 1(x).

Since g has only simple zeros then for sufficiently small a, f E j. Further-

aamore from the theory of algebraic functions, see e.g., Wilkinson [63], f ahas

zeros xi (a), i E I U £0), j - 1,2 ,...,p i, satisfying

(4.15I pi.g(xi) 1/p i  f /p i(4.15) x(a)x = (P) a (-+(1)) 1 Mi a (+0(1))
3 w (x i )

and zeros y.(a), i = 1,2,...,r and j 1 l,2,...,si, which tend to yi when a goes
a

to zero. Thus, fC E 3(x0) for sufficiently small a. Since (fa,x 0) = "(g,x 0)

then x (fa) - xi(g) for i 1,2,...,k, and therefore
i /i

1/p1
dist(xi(fa),S(fa)) - Mia (l+o(l)), for 1 0 and i E I.

From this and (4.15) we get for i E I,

l-2n
dist(x (f )'S(f)) Mi 1/p l/Po M 3

.. i an( l) (i+o(l)).
dist(x O S(f)) M0  M

Since Mi are bounded away from zero, there exists a0,0 > 0, such that

1-2nMi 3n (n+l)g- aO (l+o(1)) k I, Vi E I.

This implies dist(xi(fa ),S(f 0 )) Z dist(xOS(fa0)), Vi E 1. Note that
0 0 0

dst(xi(f a0) ,S (f a0  dist(xOS(f0)) 0 0, vi I. Thus putting f f 0' we

get f E 3(x O) and

I,,
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mini dist(x 1 (f),S(f)) dist(x0 ,S(f)) 0

which completes the proof.
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5. MAIN RESULT

We are ready to prove the main result of this paper.

Theorem 5.1

For any positive L, any sequence of linear information operators - i

any iteration without memory cD =-F,) E ("2), and any starting point x0 E C,

N(q,ex 0) - + w e < I.

Proof

Suppose on the contrary that for some e < 1, ', cp and x0 , k - N(e,e,x 0 )

is finite. This means that

(5.1) 4f E 3(xo), .i0 E [l,k] :dist(x oS(f)) ! e dist(xo,S(f))

where x, p 0i(xo; Mi(f,x0 )). Consider now the operator defined by

(5.2) '.t (f,x) [TI(f,x0),2(f=x0),...,'(f x0)

Of course, ". is a linear information operator in the sense of Definition (2.2).

Define functionals iE

(5.3) *i(xo; M (f,xo)) C i(Xo; i(f,xo))

From Theorem 4.2 we know that for functionals cp, there exists a polynomial fO,

f0 f j(X0), such that

(5.4) dist(x, S(fo)) 0 dist(xoS(fo)) 0 0, Vi - ,2,...,k,

where x, a xi(f 0 ) - c'i(x 0 ; 1 (fo,xi)), i - 1,2,...,k. Due to (5.3), xi(f 0) - xi(f 0).

From (5.1) there exists i0 0 i 0 (f 0 ) such that
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dist(xi0,S(f0)) S e dist(x0 ,S(f0)) < dist(x0,S(f0))

which contradicts (5.4). Hence Theorem 5.1 is proven. U

From Theorem 5.1 and (3.8) follows

Corollary 5.1

For any positive L, any sequence of linear information operators ( 1 1.

any iteration without memory ( - E ICI(, and any starting point x0 E ,

comp 9,€,xo) +-, Ve < 1. U

I:I
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6. MEMORY

In this section we briefly extend all previous definitions and results to

iterations with memory. Let H and 3 be the class of polynomials defined as in
Section 2. Let m, m > 0, be an integer, and let L :H x C be a func-

i.

tioreil which is linear with respect to f. Then the linear information operator

', -t" CL1 ,L2 ,... ,L] H X n is defined as

(6.1) '(f,x 0,x ,...,X() [L(f,zl,z2,...,Z 1 ),L2 (f,zlz 2,... Zm+2),..

L n(f,zlz 2,. ...,zm+n) ]

where z, x 0,z2  _ xm,...,Z+ 1  x and zj = (Zl .... Zm+lL1(fzlpz2,...Zm+l

L (f'zl~z...,z2),...,L (f'zl~z Z for some functions

j m+2,m+3,...,n. Let *n,m be the class of all such information operators.

Let Ti - (%i) be a sequence of ti ."i E * ni m . For distinct x0 ,Xl,...,X_m we

construct a sequence of approximations (xi) by the formula

(6.2) xi i(X0,X l,.... Xm ; ,i(fxx0,x-l,...,X-m))

l+mmn i

where c - D P -. are functionals, cpi E m (5t ). Let now ( - [ci]
be a sequence of functionals (). Then rp is called an iteration

with memory using 2, o E §(1).

Let ("Mil be a sequence of linear information operators with memory,

ni t ' p - (p) Es, e be a positive number, and x0 3x1 3 --. be

given distinct points. For any f E ,, define

(6.3) N - N(C,¢,x0,xl,...,x ref)

as the minimal integer, if it exists, such that
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(6.4) dist(xN,S(f)) r e dist(x0 ,S(f)),

and N - otherwise. Let comp(pCx 0,x 1 ,...x ,f) be the cost of computing

xN . Let L, L > 0, be a given constant. Then

(6.5) N(9,6,xo,Xl,...,x ) sup N(c,6,XoX-l,...,x-M'f)
fE((x0)

where 3(x0 ) is defined by (3.6). Similarly, let

(6.6) comp(9,,x0 ,x.1 ...,x) sup cMP(,¢,x0(xx0 ,...,x)mf ) .

As before, there exists a positive c such that

(6.7) comp('p,e,xox 1 ,...,xM) k cN( 'xOxl...,x,), V4,e,x 0 xo 1 ,...,xM.

By a technique similar to the proof of Theorem 5.1 it is possible to prove

Theorem 6.1

For any positive L, any m, m > fl, any sequence of linear information

operators with memory 3, any iteration _, ( E m CM ) and any distinct starting points

xOX, l,...,xom E

comp(Cwsxxl,...,x) < N( , ,XoX ,...,x., - + 1.

Remark 6.1

In practice one often wants to reduce a residual error, i.e., to find a point

xk such that

(6.8) If(xk)I a eIf(xo)I
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for some e < 1. Note that (6.8) does not imply that xk is closer to a solution

a E S(f) than x0. For problem (6.8) we pose the same question:

What is the complexity of any iteration cp using linear information

solving (6.8)?

it can be proven that the complexity of ; is infinity even for a subclass of

3(x0). More precisely, let T be a finite dimensional linear operator which

maps H onto Cs. Let c E Cs. Define

3(x 0 ,T,c) M (f E 3(x) : T(f) = c.

For any iteration with memory tp EI m(M), any e < 1, any x0 E C, and any

f E 3(x 0 ,T,c), define N' - N'(Pc,c,x0 ,f) as the minimal integer, if it exists,

such that if(xN,)l : ejf(xo) l, and N' - + - otherwise. Furthermore, let

N'@p cscx 0) - sup N'(,s~c~x 0,f).
fE3(xoT,c)

Then for any sequence of linear information operators with memory M, any

E , any T, any nonzero c E (Ls, and any distinct starting points
m

XoX.l ,...,Xm E C, we have

N' (cp,,c,xo) 0 +,, we < 1.

In particular, this also holds for T(f) - f(x0), i.e., for the class of all

complex polynomials from 3(x0) which have a fixed value at x0, f(x0) - c 0.

We want to stress that Theorems 5.1 and 6.1 can also be proven for the class

3(Xo,T,c). The proof, however, is more complicated. U
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7. OPEN PROBLEMS

In this section we pose a number of open problems which are relevant to

the questions studied in this paper.

In Theorem 6.1 we prove that for any m 2 0, any linear information

Smi])' 7t E * , any iteration p " &p I T() and any integer k, there
1.3 1 n i'mi m

exists a "difficult" polynomial f, f E 3(x 0 ), i.e., a polynomial which requires

at least k+l iterative steps to reduce the starting error dist(x 0,S(f)). Let

P - P(M,p,k) be the set of all such difficult polynomials and let d - d(%f,M,k)

be the minimal degree of such polynomials, i.e.,

d m min deg f.

fEP

Problem 1

Find d as a function of m, k, and nln 2,...,nK.

It can be shown that

k

(7.1) d : (k+2)(2+2 nt) + k.

i1

In general, this bound is not sharp. For instance, for a stationary iteration,

(7.2) d ! (k+l) (nl+l) + k.

By a stationary iteration we mean an iteration which constructs a sequence of

approximations by the formula

(7.3) xi+l (Xl,Xi.1,...xi.-; (fxix.,...,x i-))

for some "lE *n 1m and ci E 6

L1
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Theorem 6.1 states that the set P of "difficult" polynomials is nonempty.

It would also be interesting to investigate how "large" this set is. We

therefore pose

Problem 2

What proportion of polynomials from 3(x0) is "difficult"? U

In this paper we have restricted ourselves to the class 3 of all complex

polynomials having only simple zeros. It is interesting to find for which classes

of problems the same negative result holds, i.e., for which classes of problems

the complexity of finding xN using linear information is infinite. Does this

hold for the class of all real polynomials with all simple zeros? We sunarize

this in

Problem 3

Characterize the classes of problems for which the complexity of finding xN

is infinite.

From our results it follows that to make the complexity of finding xN finite,

it is necessary to use some nonlinear information about f. An important open

problem is to characterize nonlinear information which yields not only finite but

relatively small complexity. On the other hand, there exists nonlinear information

for which the complexity is still infinity. For instance, if M(f,x 0) -

G(Ll(fz1),L2(f,z2),...,Ln(f,z n)) where L1,...,L are, as always, linear func-

tionals with respect to f and G is an arbitrary operator (nonlinear in general),

then it is obvious that for any sequence It of such iteration operators, the com-

plexity of finding xN is infinite. We propose
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Problem 4

(i) For a given nonincreasing function g, g :f0,1) R, find informa-

tion M and an iteration Cp using such that the complexity

Comp(9p,¢,x O) ! g(e) for any e E [0,1).

(ii) Characterize the class of all information for which the complexity

of finding xN is finite.

.
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